首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2102篇
  免费   88篇
  2023年   9篇
  2022年   8篇
  2021年   47篇
  2020年   27篇
  2019年   51篇
  2018年   57篇
  2017年   36篇
  2016年   86篇
  2015年   118篇
  2014年   124篇
  2013年   158篇
  2012年   214篇
  2011年   204篇
  2010年   130篇
  2009年   106篇
  2008年   161篇
  2007年   144篇
  2006年   88篇
  2005年   93篇
  2004年   78篇
  2003年   65篇
  2002年   42篇
  2001年   28篇
  2000年   29篇
  1999年   25篇
  1998年   7篇
  1997年   5篇
  1996年   1篇
  1995年   3篇
  1994年   1篇
  1993年   5篇
  1992年   9篇
  1991年   5篇
  1989年   3篇
  1988年   1篇
  1986年   3篇
  1985年   1篇
  1983年   1篇
  1982年   2篇
  1981年   1篇
  1980年   1篇
  1976年   2篇
  1975年   2篇
  1973年   1篇
  1970年   1篇
  1969年   2篇
  1968年   1篇
  1967年   3篇
  1965年   1篇
排序方式: 共有2190条查询结果,搜索用时 421 毫秒
991.

Background

Patients with hormone receptor-positive breast cancer typically show favorable survival. However, identifying individuals at high risk of recurrence among these patients is a crucial issue. We tested the hypothesis that [18F]-fluorodeoxyglucose positron emission tomography (FDG-PET) scans can help predict prognosis in patients with hormone receptor-positive breast cancer.

Methods

Between April 2004 and December 2008, 305 patients with hormone receptor-positive breast cancer who underwent FGD-PET were enrolled. Patients with luminal B subtype were identified by positivity for human epidermal growth factor receptor-2 (HER2) or high Ki67 (≥14%) according to criteria recently recommended by the St. Gallen panelists. The cut-off value of SUVmax was defined using the time-dependent receiver operator characteristic curve for recurrence-free survival (RFS).

Results

At a median follow up of 6.23 years, continuous SUVmax was a significant prognostic factor with a hazard ratio (HR) of 1.21 (p = 0.021). The cut-off value of SUVmax was defined as 4. Patients with luminal B subtype (n = 82) or high SUVmax (n = 107) showed a reduced RFS (p = 0.031 and 0.002, respectively). In multivariate analysis for RFS, SUVmax carried independent prognostic significance (p = 0.012) whereas classification with immunohistochemical markers did not (p = 0.274). The Harell c-index was 0.729. High SUVmax was significantly associated with larger tumor size, positive nodes, HER2 positivity, high Ki67 (≥14%), high tumor grade, and luminal B subtype.

Conclusions

Among patients with hormone receptor-positive breast cancer, FDG-PET can help discriminate patients at high risk of tumor relapse.  相似文献   
992.
Eukaryotic cells control the initiation of DNA replication so that origins that have fired once in S phase do not fire a second time within the same cell cycle. Failure to exert this control leads to genetic instability. Here we investigate how rereplication is prevented in normal mammalian cells and how these mechanisms might be overcome during tumor progression. Overexpression of the replication initiation factors Cdt1 and Cdc6 along with cyclin A-cdk2 promotes rereplication in human cancer cells with inactive p53 but not in cells with functional p53. A subset of origins distributed throughout the genome refire within 2-4 hr of the first cycle of replication. Induction of rereplication activates p53 through the ATM/ATR/Chk2 DNA damage checkpoint pathways. p53 inhibits rereplication through the induction of the cdk2 inhibitor p21. Therefore, a p53-dependent checkpoint pathway is activated to suppress rereplication and promote genetic stability.  相似文献   
993.
Mutations in the gap junction β2 (GJB2) gene, encoding the connexin26 (CX26) protein, are the most common cause of non-syndromic hearing loss (HL) in many populations. In the East Asian population, two variants, p.V27I (c.79G>A) and p.E114G (c.341G>A), are considered benign polymorphisms since these variants have been identified in both HL patients and normal hearing controls. However, some studies have postulated that homozygotes carrying both p.V27I and p.E114G variants could cause HL. To elucidate possible roles of these variants, we used in vitro approaches to directly assess the pathogenicity of four haplotypes generated by the two polymorphisms: VE (wild type), I*E (p.V27I variant only), VG* (p.E114G variant only), I*G* (both variants). In biochemical coupling assays, the gap junctions (GJs) composed of VG* and I*G* types displayed defective channel activities compared with those of VE wild types or I*E types, which showed normal channel activities. Interestingly, the defect in hemichannel activity was a bit less severe in I*G* type than VG* type, suggesting that I* variant (p.V27I) may compensate for the deleterious effect of G* variant (p.E114G) in hemichannel activities. Our population studies using 412 Korean individuals showed that I*G* type was detected at around 20% in both HL patients and normal controls, suggesting that I*G* type may not be a pathogenic polymorphism. In contrast, VG* type was very rare (3/824) and detected only in HL patients, suggesting that VG* homozygotes (VG*/VG*) or compound heterozygotes carrying VG* type with other mutations may cause HL.  相似文献   
994.
Rice is one of the most important global food crops and a primary source of calories for more than half of the world's population. Rice production increased steadily during the green revolution era primarily as a result of introducing high-yielding rice varieties. World rice production increased at a rate of 2.3–2.5% per year during 1970s and 1980s, but this rate of growth was only 1.5% per year during the 1990s. The yield growth rate for rice has further declined during the first decade of this century. However, the populations in the major rice-consuming countries continue to grow at a rate of more than 1.5% per year. According to various estimates, world rice production must increase at the rate of 2 million tons per year. To meet this challenge, rice varieties with higher yield potential and greater yield stability are needed. Various strategies for increasing the yield potential of rice include; (1) conventional hybridization and selection, (2) F1 hybrid breeding, (3) modification of plant architecture, and (4) enhancement of photosynthesis. Many genes and QTLs have recently been identified which will assist with rice breeding objectives.  相似文献   
995.
The majority of Taenia tapeworm specimens in the museum collections are usually kept in a formalin fixative for permanent preservation mainly for use in morphological examinations. This study aims to improve Taenia tapeworm identification even of one preserved in formalin for a maximum of 81 years. Taenia tapeworms were collected by the parasite collection unit of the Swiss Natural History Museum and from units in Indonesia, Japan and Korea. A small amount of formalin-fixed tissue (100 mg) was crushed in liquid nitrogen and then soaked in a Tris-EDTA buffer for 3-5h. The sample was then digested in SDS and proteinase K (20 mg/ml) for 3-5h at 56 °C. After the addition of proteinase K (20mg/ml), SDS and hexadecyl-trimethyl-ammonium bromide (CTAB), incubation was continued for another 3h at 65 °C. A maximum yield of genomic DNA was obtained from this additional step and the quality of genomic DNA obtained with this extraction method seemed to be independent of the duration of storage time in the formalin fixative. The molecular identification of Taenia tapeworms was performed by using PCR and DNA sequences corresponding to position 80-428 of cox1 gene. T. asiatica was detected in the isolates of Indonesia, Japan and Korea. Improvements in the genomic DNA extraction method from formalin fixed museum collections will help in the molecular identification of parasites.  相似文献   
996.
Apoptosis inducing factor (AIF) is a mitochondrial oxidoreductase that scavenges reactive oxygen species under normal conditions. Under certain stresses, such as exposure to N-methyl-N'-nitro-N'-nitrosoguanidine (MNNG), AIF is truncated and released from the mitochondria and translocated into the nucleus, where the truncated AIF (tAIF) induces caspase-independent cell death. However, it is unknown how cells decide to kill themselves or operate ways to survive when they encounter stresses that induce the release of tAIF. Here, we demonstrated that USP2 and CHIP contribute to the control of tAIF stability. USP2 deubiquitinated and stabilized tAIF, thus promoting AIF-mediated cell death. In contrast, CHIP ubiquitinated and destabilized tAIF, thus preventing the cell death. Consistently, CHIP-deficient cells showed an increased sensitivity to MNNG. On the other hand, knockdown of USP2 attenuated MNNG-induced cell death. Moreover, exposure to MNNG caused a dramatic decrease in CHIP level, but not that of USP2, concurrent with cell shrinkage and chromatin condensation. These findings indicate that CHIP and USP2 show antagonistic functions in the control of AIF-mediated cell death, and implicate the role of the enzymes as a switch for cells to live or die under stresses that cause tAIF release.  相似文献   
997.
We generated rice lines with increased content of nicotianamine (NA), a key ligand for metal transport and homeostasis. This was accomplished by activation tagging of rice nicotianamine synthase 2 (OsNAS2). Enhanced expression of the gene resulted in elevated NA levels, greater Zn accumulations and improved plant tolerance to a Zn deficiency. Expression of Zn-uptake genes and those for the biosynthesis of phytosiderophores (PS) were increased in transgenic plants. This suggests that the higher amount of NA led to greater exudation of PS from the roots, as well as stimulated Zn uptake, translocation and seed-loading. In the endosperm, the OsNAS2 activation-tagged line contained up to 20-fold more NA and 2.7-fold more zinc. Liquid chromatography combined with inductively coupled plasma mass spectrometry revealed that the total content of zinc complexed with NA and 2'-deoxymugineic acid was increased 16-fold. Mice fed with OsNAS2-D1 seeds recovered more rapidly from a zinc deficiency than did control mice receiving WT seeds. These results demonstrate that the level of bio-available zinc in rice grains can be enhanced significantly by activation tagging of OsNAS2.  相似文献   
998.
Tuberculosis (TB) is one of three major infectious diseases, and the control of TB is becoming more difficult because of the emergence of multidrug-resistant and extensively drug-resistant strains. In this study, we explored the (1)H NMR-based metabolomics of TB using an aerobic TB infection model. Global profiling was applied to characterize the responses of C57Bl/6 mice to an aerobic infection with virulent Mycobacterium tuberculosis (MTB). The metabolic changes in organs (i.e., the lung, the target organ of TB, and the spleen and liver, remote systemic organs) and in serum from control and MTB-infected rats were investigated to clarify the host-pathogen interactions in MTB-infected host systems. Principal components analysis (PCA) and orthogonal partial least-squares discriminant analysis (OPLS-DA) score plots showed distinct separation between control and MTB-infected rats for all tissue and serum samples. Several tissue and serum metabolites were changed in MTB-infected rats, as compared to control rats. The precursors of membrane phospholipids, phosphocholine, and phosphoethanolamine, as well as glycolysis, amino acid metabolism, nucleotide metabolism, and the antioxidative stress response were altered based on the presence of MTB infection. This study suggests that NMR-based global metabolite profiling of organ tissues and serum could provide insight into the metabolic changes in host infected aerobically with virulent Mycobacterium tuberculosis.  相似文献   
999.
Lim YB  Pyun BJ  Lee HJ  Jeon SR  Jin YB  Lee YS 《Proteomics》2011,11(7):1254-1263
Increasing efforts are being made to develop more sensitive and faster molecular methodologies at the genomic and proteomic levels for the identification of protein markers after exposure to ionizing radiation (IR). However, few specific protein markers, especially organ-specific markers, have been identified. In this study, we analyzed altered protein expressions in various tissues, namely, brain, lung, spleen, and intestine, from 1 Gy-irradiated mice by employing 2-DE analysis. MALDI-TOF MS and peptide mapping identified 25 proteins that showed greater than twofold expressional changes. In order to confirm significant differences between control and IR-treated samples, ten identified proteins with available commercial antibodies were selected for immunoblotting. Of these, only five showed protein expression patterns that were similar to 2-DE data. These were heat shock protein 5 (HSP 5), HSP 90 kDa β, HSP 1, transaldolase 1 (TA1), and phosphoglycerate kinase 1 (PGK1). In particular, PGK1 was specifically upregulated in mouse intestine, and TA1 was specifically downregulated in brain by irradiation. TA1 expression was unaltered in other tissues. Based on these data, we suggest that TA1 and PGK1 can be considered as candidate tissue-specific protein markers of IR exposure.  相似文献   
1000.
Lee KT  Byun MJ  Kang KS  Park EW  Lee SH  Cho S  Kim H  Kim KW  Lee T  Park JE  Park W  Shin D  Park HS  Jeon JT  Choi BH  Jang GW  Choi SH  Kim DW  Lim D  Park HS  Park MR  Ott J  Schook LB  Kim TH  Kim H 《PloS one》2011,6(2):e16356
Obesity represents a major global public health problem that increases the risk for cardiovascular or metabolic disease. The pigs represent an exceptional biomedical model related to energy metabolism and obesity in humans. To pinpoint causal genetic factors for a common form of obesity, we conducted local genomic de novo sequencing, 18.2 Mb, of a porcine QTL region affecting fatness traits, and carried out SNP association studies for backfat thickness and intramuscular fat content in pigs. In order to relate the association studies in pigs to human obesity, we performed a targeted genome wide association study for subcutaneous fat thickness in a cohort population of 8,842 Korean individuals. These combined association studies in human and pig revealed a significant SNP located in a gene family with sequence similarity 73, member A (FAM73A) associated with subscapular skin-fold thickness in humans (rs4121165, GC-corrected p-value  = 0.0000175) and with backfat thickness in pigs (ASGA0029495, p-value  = 0.000031). Our combined association studies also suggest that eight neuronal genes are responsible for subcutaneous fat thickness: NEGR1, SLC44A5, PDE4B, LPHN2, ELTD1, ST6GALNAC3, ST6GALNAC5, and TTLL7. These results provide strong support for a major involvement of the CNS in the genetic predisposition to a common form of obesity.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号